Ya aprendimos que cualquier cantidad que requiera tanto magnitud como dirección para su descripción completa es una VECTORIAL.
Entre los ejemplos de cantidades vectoriales están la fuerza, la velocidad y la aceleración. En cambio, una cantidad que se describe sólo con su magnitud, y no implica dirección, se llama CANTIDAD ESCALAR. La masa, el volumen y la rapidez son cantidades escalares.
Una cantidad vectorial se representa con una flecha. Cuando la longitud (a escala) de la flecha representa la magnitud de la cantidad, y la dirección indica la dirección de la cantidad, se dice que la flecha es un vector.
La suma de vectores con direcciones paralelas es sencilla: Si tienen la misma dirección, se suman; si tienen direcciones opuestas, se restan. La suma de dos o más vectores se denomina la RESULTANTE. Para determinar la resultante de dos vectores que no tienen exactamente la misma dirección o la opuesta, se usa la REGLA DEL PARALELOGRAMO (un paralelogramo es una figura con cuatro lados, donde los lados opuestos son opuestos entre sí)
Se traza un paralelogramo donde los dos vectores sean lados adyacentes, y la diagonal del paralelogramo representa la resultante.
En el caso especial en que los dos vectores son de igual magnitud y perpendiculares entre sí, el paralelogramo es un cuadrado.
VECTORES FUERZA
En la imagen se muestra la vista superior de dos fuerzas horizontales que actúan sobre una caja. Una es de 30N, y la otra es de 40N. Sólo con medir se demuestra que la resultante de este par de fuerzas es de 50N.
Al aplicar la regla del paralelogramo se demuestra que la tensión en el lado derecho de la cuerda es mayor que la del izquierdo. Si mides los vectores verás que la tensión en el lado derecho de la cuerda es más o menos el doble que la tensión en el izquierdo. Ambas tensiones se combinan para soportar su peso.
Vectores velocidad
La rapidez es una medida de "qué tan rápido", la velocidad es una medida de que tan rápido y también "en qué dirección". Si el velocímetro del automóvil indica 100km por hora, conoces su rapidez. Si en el automóvil también hay una brújula en el tablero, que indique que el vehículo se mueve hacia el norte, por ejemplo, entonces sabrías que tu velocidad es de 100km por hora hacia el norte. Si sabes tu rapidez y tu dirección, conoces tu velocidad.
Imagina que una avioneta vuela hacia el norte a 80km/h en relación con el aire que la rodea. Supón que la atrapa un viento cruzado (viento que supla perpendicular a la dirección de la avioneta) de 60 km por hora, que la empuja desviándola del curso trazado.
Este ejemplo se representa en la siguiente imagen, con los vectores a la escala de 1cm a 20km/h. Entonces, la velocidad de la avioneta de 80km/h se representa con el vector de 4cm; y la del viento cruzado, de 60km/h, con el vector de 3cm. La diagonal del paralelogramo que se traza (en este caso es un rectángulo) mide 5cm, y representa 100km/h. Entonces, en relación con el suelo, la avioneta se mueve a 100km/h en una dirección intermedia entre el norte y el noreste.
EJERCICIOS:
En una hoja dibuje la imagen de abajo del avión con el viento en distintas direcciones y traza la resultante para cada caso:
Trazar la resultante para cada lancha y decir cual llegará primera a la orilla:
Componentes de vectores.
Así como se pueden combinar dos vectores perpendiculares en un vector resultante, también a la inversa, cualquier vector se puede descomponer en dos vectores componentes perpendiculares entre sí. A estos dos vectores se los llama COMPONENTES del vector que reemplazan.
El proceso de determinar los componentes de un vector se llama descomposición. Cualquier vector trazado en un papel se puede descomponer en un componente vertical y otro horizontal.
EJERCICIOS:
- Vas remando en una canoa, a 4km/h tratando de cruzar directamente un río que corre a 3km/h, como se ve en la imagen. a) ¿Cuál es la rapidez resultante de la canoa relativa a la orilla? b) ¿En aproximadamente que dirección debería remarse la canoa para que llegue a la otra orilla y su trayectoria sea perpendicular al río?
- Una cuerda sostiene una linterna que pesa 50N. ¿La tensión en la cuerda es menor, igual o mayor que 50N? Utiliza la regla del paralelogramo para sustentar tu respuesta
- La cuerda se coloca en otra posición, como se ilustra y aún sostiene la linterna de 50N. ¿La tensión en la cuerda es menor, igual o mayor que 50N?
About Ana Emilia de Orellana
Hola! "Los Puntos De Apoyo" es un blog construido para brindarle material de estudio a todo aquel que se encuentre en el colegio secundario, cursando el ingreso a la universidad, o bien en una carrera de grado. Asimismo compartiremos noticias y material divertido para los amantes de física como nosotros. Disfruta!
0 comentarios:
Publicar un comentario